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Abstract 

Episodic memory, the processes by which information about experienced events is 

encoded into some long-term store and retrieved, has in recent years been studied in terms of 

retrieval tasks.  Typically, researchers consider how experimental manipulations affect 

performance on recall tasks or recognition tasks, but rarely both.  This dividing line came into 

being following the discovery of a null list strength effect in recognition.  In free recall tasks, 

memory performance for an item is harmed if memory for other items studied on the list are 

strengthened, but not so for recognition tasks.  Although the models that resulted from this 

dissociation represent a significant advance, that there is a dissociation at all between models of 

recognition and models of recall is not a desirable outcome.  Efforts should be made to return 

towards models of memory that can account for a wide variety of test tasks.  A consideration of 

cued recall, a task that incorporates elements of both recognition and free recall, may help 

advance the field in that regard.  To that effect, in a series of experiments, list strength effect in 

cued recall was measured.  In broad terms, the list strength effect in cued recall was found to be 

very small and largely indistinguishable from a null effect.  We apply the REM model to these 

findings and demonstrate that the inclusion of context as a test cue accounts for these findings.  

This places cued recall, both in the REM model and the data, as a point of contact between the 

context-dominant free recall task and the item-dominant single item recognition task along the 

dimension of a critically diagnostic effect for models of episodic memory.
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Introduction 

Episodic memory, often conceived of as a process by which experienced events are 

encoded into a long-term store, maintained, and retrieved, is often studied in terms of the latter: 

how manipulations affect performance on some specific set of retrieval tasks.  These tasks are 

commonly either recognition, identifying whether or not an item was experienced in some 

specific context, or recall, the generation of what items were experienced within some context 

and/or associated with some other item, but rarely both.  This major dividing line is reflected by 

the models used, some dedicated to recognition tasks (e.g.: Bind-Cue-Decide Model of Episodic 

Memory, BCD-MEM, Dennis & Humphreys, 2001), some more commonly associated with 

recall tasks (e.g.: Temporal Context Model, TCM, Howard & Kahana, 2002).  This division 

arose following the decline of the multi-task global matching models. 

The global matching models (GMMs, Humphreys, Pike, Bain, & Tehan, 1989) are a class 

of models that were, for quite some time, able to successfully account for long-term episodic 

memory effects as observed in a variety of test tasks, including recognition and free recall.  

These models, which include the Search of Associative Memory (SAM; Raaijmakers & Shiffrin 

1981) model and the Theory of Distributed Associative Memory model (TODAM; Murdock, 

1982), among others, have the common property that retrieval depends on a “global match,” 

hence the name, to the contents of long-term memory.  As such, retrieval depends primarily on 

memory for the specific to-be-remembered item and other items studied within the same 

contexts. Specifically, these models made the strong prediction that as the strength of other list 

items increased, accuracy decreased. This prediction was tested in the list strength paradigm.  

The list strength effect (Tulving & Hastie, 1972) proved to be a critical test for this class 

of models (Shiffrin, Ratcliff, & Clark, 1990).  Paradigmatically, participants study and are tested 
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on a “pure strong” list where their memory for all the items are strengthened, a “mixed” list 

where their memory for only half of the items are strengthened, and a “pure weak” list where 

their memory for none of the items are strengthened, testing their memory after the presentation 

of each list.  Memory is typically strengthened by repetitions, study time, or encoding task. The 

effect is then computed by comparing the difference in performance for strong items and weak 

items on pure versus mixed lists.  Three qualitative outcomes are possible.  In a positive list 

strength effect, strong items show better performance on mixed lists than pure lists and weak 

items show better performance on pure lists than mixed lists.  In a negative list strength effect, 

the reverse occurs: strong items show better performance on pure lists than mixed lists, and weak 

items show better performance on mixed lists than pure lists.  In a null list strength effect, the 

strength of the other items on the list has no effect on memory performance. 

Critically, Ratcliff, Clark and Shiffrin (1990) observed that the measured effect of list 

strength, when memory is strengthened via spaced repetitions, depends on how memory is tested.  

In free recall tasks, they observed a positive list strength effect.  A smaller positive list strength 

effect was observed in cued recall.  However, when participants were tested with single item 

recognition, a null list strength effect occurred.  In short, when memory for items is strengthened 

via spaced repetitions, the effect of mixing lists depends upon the test condition. 

This finding that the list strength effect was test-dependent even under the same study 

conditions was a critical problem for the GMMs.  For this class of models, strengthening 

memory for an item increases the activation strength for when that item is probed at test, but also 

increases the activation strength for when other items are probed to some extent.  As such, 

strengthening an item adds signal in that it increases activation for that item, making it more 

likely to be recalled or labeled as “old” in a recognition test, but also adds noise, in that 
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increasing the activation of other items can make them more difficult to distinguish from the 

current item, or, in the case of recognition, from unstudied items presented at test (foils).  In 

SAM, this noise comes in the form of additional strengthening of associations between items and 

contexts.  In TODAM, this noise is a direct byproduct of adding the repeated item multiple times 

in memory.  Regardless, in all cases the outcome is the same.  In pure strong lists, the increase in 

signal is greater than the increase in noise, and performance improves relative to that in pure 

weak lists.  However, in a mixed list, there is more noise than that in a pure weak list and less 

than that in a pure strong list.  The end result is a greater signal-to-noise ratio for strong items on 

mixed lists than pure lists, and a smaller signal-to-noise ratio for weak items on mixed lists than 

pure lists.  In other words, the GMMs naturally predicted a positive list strength effect, and did 

so due to the way in which items were encoded and therefore held regardless of the nature of the 

memory test.  Overcoming this effect proved difficult for the GMMs.  Shiffrin, Ratcliff, and 

Clark (1991) provide a detailed review of the difficulties involved. 

This effect, along with the observation of a word frequency mirror effect (that, in a 

recognition paradigm, less common stimuli are more likely to be correctly identified as studied 

and more likely to be correctly identified as unstudied than more common stimuli) and other 

empirical findings led to the eventual abandonment of the GMMs as general models of episodic 

memory.  In their place, differentiation and context noise classes of models were created.  The 

differentiation class of models, amongst them the Subjective Likelihood in Memory (SLiM; 

McClelland & Chapell, 1998) and Retrieving Effectively from Memory (REM; Shiffrin & 

Steyvers, 1997) models, account for the null list strength effect by adding more information 

about a stimulus to its representation upon strengthening, reducing confusability between items.  

As such, strengthening memory for dissimilar items does not add additional noise to memory, 
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and in fact removes a small amount.  Note that this differentiation process reverses when the 

information stored in memory is highly similar in both REM and SLiM, see Criss (2006) and 

Criss and McClelland (2006).  This history gives the list strength effect a place of special 

importance for memory modeling: rarely does one effect cut against a fundamental component of 

so many models at once or, for that matter, herald a paradigm shift in the field. 

While this development represented a significant advance in memory theory, it also led to 

something of a division in the literature, with models, experiments, and articles primarily 

focusing on issues pertinent to recognition memory or recall, but rarely both (c.f. Criss & 

Howard, 2015).  These two topics, of course, are not the true interest of the scientific exploration 

of human long-term episodic memory.  As a field, we want models, theories, and approaches that 

can explain how information is encoded, stored, and retrieved, in the many ways in which these 

processes can be manipulated.  It seems incumbent, then, to return to models of memory that can 

account for arrays of effects across multiple test tasks. 

Cued recall may be a means by which we may return to the prominence of multi-task 

memory models.  This is because, in a fashion, cued recall is a hybrid of recall and recognition 

tasks.  Like recognition, a cue is provided during cued recall and like free recall, an item must be 

generated from memory and output.  Elements of each task are incorporated into a cued recall 

task.  In contrast to simply accounting for effects of recognition with recognition theories and 

effects of recall with recall theories, a merger of both sets of theories will likely be needed to 

account for cued recall data.  This makes cued recall a natural choice as a task by which multi-

task memory models may be evaluated. 

Given the list strength effect’s history as a critical component in evaluating multi-task 

models of memory, it is important to have a firm grasp of precisely the effect’s size and direction 
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if one wishes to study multitask models though the lens of cued recall.  In the following set of 

experiments, we seek get a more precise measure of the size and direction of the list strength 

effect in cued recall, and then apply the REM model to the findings.  To foreshadow and 

summarize our findings, we observe a very small positive list strength effect in cued recall that 

was, in each experiment, indistinguishable from a null effect by hypothesis tests.  The list 

strength effect in cued recall can be accounted for in the REM model if context information is 

used alongside item information in the cue. 

Overview of Experiments 

 Each of the following experiments employs some variation on the list strength effect 

paradigm1.  As such, every participant completed at least three study-test blocks, consisting of a 

minimum of one pure strong block, one pure weak block, and one mixed block.  Each study-test 

block consisted of a study list followed by a distractor task and a test of memory.  In 

Experiments 1 through 3, this was always a test of cued recall, but in Experiments 4 and 5 

participants were additionally given free recall and single item recognition tests for some blocks, 

with memory task post-cued.  Additionally, each study-test block used a unique and randomized 

set of words, such that no participant would study a word that had appeared in a previous block.  

In pure weak blocks, all word pairs were presented just once.  In pure strong blocks, all word 

pairs were strengthened via multiple spaced presentations of the pair during study.  In mixed 

blocks, half the pairs were strengthened via repetition, and half were not. Details of the timing 

and nature of repetition and mixing vary for each experiment and will be described for each 

individual experiment. 

1 Much of this paper, specifically the methods section, compares and contrasts our methods to that Experiment 6 of 
Ratcliff, Clark, and Shiffrin (1990), resulting in a ubiquity of in-line citations for said experiment and said 
publication.  To minimize hassle, references to the publication will be initialized to RCS(1990), and references to 
Experiment 6 will be initialized to RCS(1990)e6. 
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On cued recall trials for all reported experiments, participants were instructed to type out 

the word they had studied alongside the test cue, but were given the option to type out the phrase 

“idk” if they did not know the answer.  As such, any given participant’s response could be scored 

as a correct response (matching the target word, with errors in spelling, tense, and pluralization 

allowed), an intrusion (a response that is incorrect), or a response failure if they responded with 

an “idk” or left the question blank.  In the case of free recall, participants were instructed to type 

out as many words as they could recall, as such the number of correct responses was the number 

of unique correct outputs.  Intrusions in free recall tasks were computed by the number of 

outputted items that were not on the studied list.  In single item recognition, a yes-no decision 

was forced for a series of targets and foils intermixed and performance was measured primarily 

by d’ with the loglinear correction (Hautus 1995, Stanislaw & Todorov 1999):  

𝑑𝑑′ = Φ�
𝐻𝐻 + 1

2
𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 + 1

� −Φ�
𝐹𝐹𝐹𝐹 + 1

2
𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 + 1

� 
(1)

where H and FA are the number of hits and false alarms, respectively, in a condition, and Hmax 

and FAmax are the maximum possible hits or false alarms, respectively, in a condition.  On mixed 

lists, because it is impossible to segregate false alarms by strength condition, the total false 

alarms given on a mixed list will inform the d’ for both weak and strong conditions on a mixed 

list, and FAmax will be twice that of Hmax (half of a mixed list is strong, half is weak).  Similarly, 

intrusions in the free recall of mixed lists cannot be segregated.  It should also be noted that 

discriminability measures do not change independently of bias with strength manipulations 

(Balakrishnan & Ratcliff, 1996; Hirshman, 1995; Stretch & Wixted, 1998).  Interpretations of 

either measure between conditions should therefore be made with some degree of caution. 
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Analysis Plan 

We employ both null hypothesis significance testing (NHST) and Bayesian methods to 

measure the list strength effect in each of the following experiments.  For NHST analyses, a 

classic repeated measures ANOVA was used to determine significant deviations from the point 

null hypothesis of a null list strength effect (no interaction of item strength and list type).  Bayes 

factors were then used to find evidence for or against this null hypothesis using the Jeffery-

Zellner-Siow prior with an assumed effect size scaling of r = 1, as recommended by Rouder et al. 

(2009, http://pcl.missouri.edu/bf-one-sample).  The Bayes factor BF01 may be interpreted as the 

ratio of evidence for the null hypothesis H0 to the evidence for its alternate H1.   For example, a 

Bayes Factor of BF01 = 10 may be thought of as stating that it is 10 times more likely that this 

data came from a distribution centered around H0 than H1.  We map Bayes factors to a verbal 

account for or against H0 using the modified classification scheme of Jeffreys (1961) as 

described by Wetzels, et al. (2011). 

Finally, we use a difference of difference score as a summary statistic and as the critical 

contrast of the Bayesian cross-experimental analyses of the magnitude of the list strength effect.  

If MW, MS, PW, and PS refer to the proportion of correctly recalled words (or, in the case of 

single item recognition, the discriminability index) for mixed weak, mixed strong, pure weak, 

and pure strong items, the difference of difference score is: 

DoD = (MS - MW) - (PS - PW) (2)

A positive list strength effect is signaled when DoD tends to be greater than 0 and a null list 

strength effect is signaled when the DoD approximates 0.  Note that the list strength effect has 

previously been computed in two other ways: a ratio of ratios, (MS/MW)/(PS/PW), and a 

difference of ratios (MS/MW - PS/PW).  Specifically, RCS(1990)e6 used the ratio of ratios as a 
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summary statistic and reported paired-samples t tests of MS/MW and PS/PW to determine 

significance (this is mathematically identical to one-sampled t tests of differences of ratios).  We 

chose the difference of differences over these other metrics primarily because its computation 

does not result in loss of data or necessitate corrections when participants fail to make a correct 

response on some condition.    

Experiment 1 

Methods 

Participants 

40 students from Syracuse University completed this experiment to obtain class credit. 

Stimuli 

 Each participant studied 144 words randomly sampled from a pool of 1643 words of 

letter length 4 to 8 and various word frequencies (KF: range = 1 to 500, mean = 44.8; logHAL: 

range = 2.89 to 13.7, mean = 8.69).  The words were randomly assigned into three groups of 48 

words, forming 24 unique word pairs per studied list. 

Procedure 

 In the pure weak block, the study phase consisted of 24 word pairs presented on the 

screen for 3s.  Participants were instructed to place each word pair into a mentally-generated 

scene during this time.  Immediately following presentation of each pair, participants were cued 

to rate the difficulty of completing this scene generation task on an integer scale of 1 to 9.  In the 

pure strong block, each of the 24 word pairs was presented twice: once during the first half of the 

list, once during the second half.  In the mixed block, half of the word pairs, the strong pairs, 

were presented twice: once during the first third of the study list, once during the final two-thirds 

of study.  The other half of the pairs, the weak pairs, were presented once during the final two-
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thirds of the study list.  All word pairs were thus studied once during the final 24 study trials and, 

as such, the mean lag between the final presentation of a word pair and its subsequent test of 

cued recall was controlled across both list type and pair strength.  Between study-test blocks, 

participants were afforded the opportunity to take a quick break. 

Results 

 Means and standard errors are provided in   

Figure 1 for correct responses, and in Table 1 for all three response measures.  Data were 

analyzed in a 2 (pure list vs mixed list) x 2 (strong pair vs weak pair) repeated measures 

ANOVA.  Critically, no list type by item strength (henceforth shortened to list strength) 

interaction was observed for correct responses, F(1,39) = 1.05, p = .312.  The data provide 

substantial evidence for the null hypothesis of a null list strength effect, BF01 = 4.89.  A list 

strength interaction was present for both intrusions, F(1,39) = 5.10, p = .030, and response 

failures, F(1,39) = 5.96, p = .019.  Strong pairs were significantly more likely to be correctly 

recalled than weak pairs, F(1,39) = 72.03, p <  

.001, and significantly less likely to be associated with a response failure, F(1,39) = 46.85, p < 

.001.  No main effect of strength was observed for intrusions, F(1,39) = 3.54, p = .068.  No main  

effect of list type (mixed vs pure) was observed for correct responses F(1,39)  < 1, intrusions 

F(1,39)  = 2.00, p = .164, or response failures F(1,39) = 6.20, p = .436. 

Discussion 

 This conceptual replication of RCS(1990)e6 found a null list strength effect for cued 

recall, which does not match the qualitative outcome of prior experiments (RCS(1990)e6, 

Kahana, Rizzuto, & Schneider, 2005).  It should be emphasized at this point that this is only a 

conceptual replication RCS(1990)e6’s test of the list strength effect in cued recall, with the focus 
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on maintaining the critical elements that should theoretically and on their own produce a positive 

list strength effect in cued recall—namely, strengthening through spaced repetition and 

A. 

Experiment 1    Experiment 2    Experiment 3   Experiment 4  Experiment 5 

`  
B. 

         Experiment 4          Experiment 5 
   SIR         FR   SIR        FR 

  

Figure 1: List strength effect means +/-1 SEM for A) cued recall in all five experiments and 
B) single item recognition and free recall in Experiments 4 and 5. DoD: difference of 
difference score. 
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employing mixed and pure study lists.  Taken in isolation, one may identify a number of specific 

methodological differences between this experiment and RCS(1990)e6 that could potentially  

account for, or complicate, the findings of Experiment 1.  Perhaps some differences in the way 

the lists were mixed, the number of repetitions, the strength of the items, the list length, or 

encoding strategy are leading to the failure to observe a positive list strength effect here.  These 

are addressed in the experiments that follow. 

 

Table 1 
 
Means and standard deviations for cued recall performance by Experiment and 
condition 

 

 Mixed  Pure  

Output Weak Strong  Weak Strong  

Experiment 1  

Corrects 0.427 (0.042) 0.615 (0.040)  0.452 (0.038) 0.594 (0.038)  

Intrusions 0.127 (0.027) 0.125 (0.026)  0.176 (0.031) 0.115 (0.022)  

Don’t Knows 0.446 (0.043) 0.260 (0.034)  0.372 (0.031) 0.292 (0.033)  

Experiment 2  

Corrects 0.353 (0.040) 0.696 (0.047)  0.321 (0.036) 0.620 (0.044)  

Intrusions 0.199 (0.039) 0.154 (0.035)  0.194 (0.032) 0.159 (0.031)  

Don’t Knows 0.449 (0.042) 0.151 (0.033)  0.486 (0.037) 0.221 (0.028)  

Experiment 3  

Corrects 0.103 (0.016) 0.368 (0.030)  0.109 (0.021) 0.370 (0.036)  

Intrusions 0.223 (0.037) 0.231 (0.032)  0.249 (0.038) 0.229 (0.035)  

Don’t Knows 0.642 (0.039) 0.402 (0.032)  0.674 (0.039) 0.397 (0.036)  

Experiment 4  

Corrects 0.081 (0.017) 0.315 (0.033)  0.087 (0.015) 0.309 (0.033)  

Intrusions 0.213 (0.032) 0.257 (0.034)  0.174 (0.029) 0.237 (0.032)  

Don’t Knows 0.706 (0.035) 0.428 (0.034)  0.742 (0.031) 0.454 (0.035)  

Experiment 5  

Corrects 0.065 (0.011) 0.258 (0.028)  0.085 (0.019) 0.235 (0.028)  

Intrusions 0.143 (0.022) 0.190 (0.026)  0.181 (0.029) 0.189 (0.035)  

Don’t Knows 0.792 (0.023) 0.552 (0.034)  0.734 (0.030) 0.575 (0.038)  
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Experiment 2: Repetition, Study Time, and List Length 

 This next experiment sought to check whether the observed qualitative differences 

between our Experiment 1 data and that of RCS(1990)e6 were due to differences in 

methodological details–list length, study time, and number of repetitions–by replicating these 

three dimensions. 

Methods 

Participants 

39 students from Syracuse University completed this experiment to obtain class credit. 

Stimuli 

 Each participant studied 96 words randomly sampled from the same word pool as used in 

Experiment 1.  The words were randomly divided into three lists of 16 word pairs. 

Procedure  

The following modifications were made from Experiment 1:  Instead of presenting strong 

pairs twice, strong pairs were presented four times. Study time in all lists was reduced from 3s to 

1.25s, and the word pair was removed from the participants’ monitor during the rating task to 

reduce the potential for residual study while rating.  The mixed list was constructed as in 

Experiment 1, such that the entire set of strong words was presented three times, in a random 

order each time, followed by a fourth presentation of the set mixed with the single presentation 

of the weak items.  Finally the list length was reduced from 24 unique pairs to 16 unique pairs. 

The list length, study time, and repetition values were chosen because they are identical to 

RCS(1990)e6. 

 

 

12 



www.manaraa.com

 

Results 

 The statistical analyses used in Experiment 1 were used again in Experiment 2 and the 

same critical set of effects for correct responses (  

Figure 1, Table 1) was observed.  No list strength interactions were present, F(1,38) < 1 for all 

three response measures.  The data provide substantial evidence in favor of the null hypothesis of 

a null list strength effect (correct responses: BF01 = 5.15).  Strong word pairs were associated 

with more correct responses, F(1,38) = 131.45, p < .001, fewer intrusions, F(1,38) = 4.87, p = 

.033, and fewer response failures F(1,38) = 114.11, p < .001.  No main effects of list type were 

observed (corrects: F(1,38) = 2.97, p = .093; intrusions: F < 1; response failures: F(1,38) = 2.73, 

p = .106). 

 Discussion 

 A positive list strength effect is once again absent from the observed effects, suggesting 

that the absence of the effect in Experiment 1 cannot be attributed to insufficient repetitions or 

differences in list length or presentation time.   

Experiment 3: Mixing, Word Frequency, and Encoding Task 

 In this experiment, we removed three more methodological differences between our 

procedure and RCS(1990)e6.  First, RCS(1990)e6 used high-frequency words.  Second, multiple 

mixed lists were used in RCS(1990)e6, each one varying from the mixing procedure we used in 

Experiments 1 and 2.  RCS(1990)e6 placed all the weak pairs at the beginning of one list, all the 

weak pairs at the end of another list, and randomly mixed in the weak pairs throughout the 

remaining list.  They observed a list strength effect when comparing the pure lists to the mixed 

list where weak pairs were studied last (although not for direct comparisons of the other lists) 

alongside a list strength effect when the three mixed lists were aggregated.  Third, RCS(1990) 
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did not report the use of a ratings task. In addition to the changes made in Experiment 2 (list 

length, study time, and number of repetitions), we match the word frequency, procedure for 

building mixed lists, and eliminate the rating task to almost exactly replicate2 the cued recall tests 

of RCS(1990)e6.   

Methods 

Participants 

47 students from Syracuse University completed this experiment to obtain class credit. 

Stimuli 

 To match the use of high-frequency words in RCS(1990)e6, 160 words were randomly 

sampled for each participant from a pool of 800 high-frequency words (KF frequency ≥ 50, 

logHAL ≥ 9, 4-11 letters long). 

Procedure 

 Within-subjects, participants now ran through 5 study-test blocks including 1 strong, 1 

weak, and 3 mixed lists.  Rather than providing the opportunity for a quick break,  

participants were informed between each study-test block that they were moving on to a new set 

of words and instructed to forget the contents of the previous lists2.  The three mixed blocks are 

arranged as follows.  In the “weak first” list, all weak pairs are presented fist, followed by strong  

pairs.  In the “weak last” list, all presentations of the strong pairs are presented first, followed by 

the presentations of the weak pairs.  In both of these lists, inter-item spacing between strong pair 

presentations was controlled to between 4 and 10 intervening presentations, matching the 

possible range of inter-item spacing for the equivalent lists in RCS(1990)e6.  In the “weak 

2 RCS(1990)e6 does not specify the manner in which lists are segregated. 
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shuffled” list presentations of the weak pairs were randomly shuffled into the arrangement of 

strong pairs.  All other details matched those of Experiment 2.  

Results 

 Data (Figure 1, Table 1) from the three mixed lists conditions were averaged into a single 

mixed list condition3 and the same statistics used in the prior two experiments were performed 

here.  As in Experiment 2, no list strength interaction was observed, F(1,46) < 1, for all three 

response measures.  There is substantial evidence in favor of the null hypothesis of a null list 

strength effect (correct responses: BF01 = 8.69).  Strong items were more likely to elicit correct 

responses, F(1,46) = 130.81, p < .001, and less likely to elicit response failures, F(1,46) = 

102.56, p < .001, than weak items, but no main effect of strength was observed on intrusions, 

F(1,46) < 1.  No main effect of list was observed, F(1,46) < 1 for all three response metrics. 

 

3 In a 3 (mixed list types) x 2 (weak vs strong) repeated measures ANOVA, no main effect of list (corrects: F(2,90) 
= 1.54, p = .221; intrusions: F(2,90) < 0; don’t knows: F(2,90) = 2.40, p = .097) or list strength interaction (F(2,90) 
< 0 for all three measures,) was observed. 

Table 2 
 
Means and standard errors for cued recall response metrics for each mixed list type by 
strength condition in Experiments 3 and 5 
 Weak First  Weak Last  Weak Shuffled 

Output Weak Strong  Weak Strong  Weak Strong 

Experiment 3 

Corrects 0.073 (0.019) 0.346 (0.042)  0.112 (0.024) 0.354 (0.041)  0.122 (0.026) 0.407 (0.043) 

Intrusions 0.213 (0.041) 0.228 (0.037)  0.221 (0.041) 0.237 (0.036)  0.237 (0.042) 0.229 (0.039) 

Don’t Knows 0.731 (0.041) 0.425 (0.042)  0.668 (0.044) 0.410 (0.042)  0.641 (0.043) 0.364 (0.040) 

Experiment 5 

Corrects 0.076 (0.013) 0.238 (0.033)  0.047 (0.014) 0.292 (0.040)  0.074 (0.018) 0.245 (0.033) 

Intrusions 0.130 (0.028) 0.218 (0.032)  0.159 (0.028) 0.181 (0.031)  0.140 (0.026) 0.170 (0.030) 

Don’t Knows 0.794 (0.028) 0.544 (0.041)  0.794 (0.029) 0.527 (0.043)  0.787 (0.031) 0.586 (0.040) 
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Discussion 

 The failure to observe a positive list strength effect after matching list length, 

presentation time, study task, measured item strength, and word frequency suggests that these  

differences between RCS(1990)e6 and Experiments 1 and 2 are an insufficient explanation for 

the null list strength effect observed, now, across three experiments. 

Experiment 4: Test Expectancy 

 The remaining difference between the prior three experiments and the original positive 

list strength effect experiment for cued is that cued recall blocks from RCS(1990)e6 were 

intermixed with blocks of single item recognition and free recall.  It has been shown that people 

are capable of altering their encoding strategies to optimize performance on an anticipated test 

(Tversky, 1973).  Neely and Balota (1980) demonstrated that, for instance, participants who were 

tested with free recall and expected a test of free recall generally outperformed those who 

expected a test of recognition instead.  Similarly, Hockley and Cristi (1996) have demonstrated 

that focusing on forming associative bindings at study improves performance on associative 

recognition tests.  The anticipation of a free recall or recognition test may have influenced 

participants’ study strategy during cued recall blocks in a manner that could lead to a positive list 

strength effect by, for instance, binding studied items more closely to contexts.  This experiment 

specifically tests that hypothesis. 

Methods 

Participants 

41 students from Syracuse University participated in this experiment to obtain class 

credit. 
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Stimuli 

 Each participant studied 288 words, and were additionally exposed to 96 foils during 

single item recognition testing, all randomly sampled from the same high-frequency word pool 

as used in Experiment 3. 

Procedure 

 Nine study-test blocks were used, three of which used a cued recall test, three of which 

used a single item recognition test, and three of which used a free recall test.  For item 

recognition, one member of each studied pair served as a target.  For free recall, participants 

were prompted to recall as many words as they could remember from the studied lists.  

Participants had 4 minutes to complete this task and could terminate the recall test by typing in a 

specific phrase to indicate they did not know any more words.  The mixed list block, one per test 

type, were arranged in the same manner as in Experiment 2.  All other details were identical to 

Experiment 3.  

 Data from cued recall were measured and analyzed as done in Experiments 1 and 2.  

Statistics were additionally performed on the hit rate, false alarm rate, and the d’ measures of 

single item recognition performance, the last of these employing the loglinear correction for 

extreme rates of hits and false alarms (Hautus 1995, Stanislaw & Todorov 1999).  Free recall 

performance was reduced to two values: a correct response proportion, the proportion of studied 

items in a condition that were recalled, and an intrusion rate, the number of unstudied items 

recalled at test divided by the number of studied items on the tested list. 
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Results 

Cued Recall 

 We performed the same set of analyses for this experiment’s cued recall data that we 

performed for Experiments 1 and 2 (Figure 1, Table 1).  No list strength interaction was observed 

for correct responses, intrusions, or response failures, F(1,52) < 1 in each case.  The data suggest 

substantial evidence for the null hypothesis of a null list strength effect (correct responses: BF01 

= 6.89).  A main effect of item strength was also observed, with repeated word pairs associated 

with more correct responses, F(1,52) = 89.69, p < .001, more intrusions, F(1,52) = 9.64, p = 

.003, and fewer response failures, F(1,52) = 128.75, p < .001. 

Single Item Recognition 

 Discriminability (Figure 1 for d’, Table 3) was analyzed with a 2 (mixed vs pure lists) x 2 

(strong vs weak items) repeated measures ANOVA.  No significant list strength interaction was 

observed, F(1,52) = 3.41, p = 0.07.  There is anecdotal evidence for the null hypothesis of a null 

list strength effect, BF01 = 1.84.  This finding was expected, and parallels the null-to-negative list 

strength effect observed throughout recognition tests in RCS(1990).  Strong items were more 

discriminable than weak items, F(1,52) = 103.64, p < .001.  No main effect of list type on 

discriminability was observed, F(1,52) < 1.    

For archival purposes, hits and false alarms (Table 3) were analyzed. Because false 

alarms on mixed lists cannot be segregated by condition, the hit rates were analyzed with a 2 

(mixed vs pure lists) x 2 (strong vs weak items) repeated measures ANOVA and the false alarm 

rates were analyzed with a 1-way (pure strong vs pure weak vs mixed list) repeated measures 

ANOVA.   
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Strong items had more hits than weak items, F(1,53) = 124.24, p < .001.  A positive list 

strength interaction was observed for hit rates, F(1,53) = 4.96, p = .03.   List type had a 

significant effect on false alarm rates, F(2,106) = 9.83, p < .001, sphericity assumed, with the 

most false alarms occurring on pure weak lists, and the least occurring on pure strong lists.  A 

post hoc t test reveals that the difference between pure weak and pure strong false alarm rates is 

significant, t(53) = 4.78, p < .001. 

 

 

 

Table 3 
 
Single Item Recognition Performance, by Condition 

Response 
Measure 

Mixed  Pure 

Weak Strong  Weak Strong 

Experiment 4 

d’ 1.361 (0.103) 2.088 (0.115)  1.175 (0.093) 2.184 (0.130) 

Hits 0.611 (0.029) 0.852 (0.023)  0.647 (0.021) 0.802 (0.024) 

False Alarms 0.148 (0.022) a   0.225 (0.022) 0.115 (0.017) 

Experiment 5 

d’ 0.818 (0.076) 1.636 (0.114)  0.865 (0.071) 1.631 (0.113) 

Hits 0.429 (0.022) 0.735 (0.022)  0.601 (0.018) 0.708 (0.023) 

False Alarms 0.183 (0.020) a   0.289 (0.020) 0.166 (0.022) 

    Mixed 
 Weak First  Weak Last  Weak Shuffled 

 Weak Strong  Weak Strong  Weak Strong 

Experiment 5 

d’ 0.791 (0.087) 1.646 (0.139)  0.778 (0.116) 1.457 (0.141)  0.911 (0.111) 1.821 (0.153) 

Hits 0.370 (0.031) 0.696 (0.031)  0.480 (0.030) 0.728 (0.031)  0.445 (0.032) 0.782 (0.033) 

False Alarms 0.157 (0.024) a   0.227 (0.024) a   0.167 (0.027) a  
aFalse alarms within a mixed list cannot be segregated by study condition 
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Free Recall 

 Proportion of correct responses (Figure 1, Table 4 also has intrusions) were analyzed, as 

in cued recall, with a 2 (mixed vs pure lists) x 2 (strong vs weak items) repeated measures 

ANOVA.  Because intrusions cannot be segregated into strong and weak intrusions on mixed 

lists, these data were analyzed with a 1-way (pure strong vs pure weak vs mixed list) repeated 

measures ANOVA, as done for false alarms in recognition.  As expected, an item strength by list 

type interaction was observed for correct responses, F(1,52) = 5.74, p = .020.  This is anecdotal 

evidence against the null hypothesis of a null list strength effect BF01 = 0.64 (BF10 = 1.56).  

Correct responses were significantly greater for strong items than weak items, F(1,52) = 78.99, p 

< .001.  Mixed lists had significantly more correct responses than pure lists, F(1,52) = 5.63, p = 

.021.  No effect of list type was observed on intrusions, F(2,106) < 1, sphericity assumed.  

Table 4 

Free Recall Performance, by Experiment and condition 
 Mixed  Pure 

Output Weak Strong  Weak Strong 

Experiment 4 

Corrects 0.084 (0.012) 0.278 (0.029)  0.082 (0.009) 0.198 (0.017) 

Intrusions 0.055 (0.013) a   0.051 (0.011) 0.063 (0.012) 

Experiment 5 

Corrects 0.039 (0.006) 0.221 (0.014)  0.072 (0.013) 0.175 (0.018) 

Intrusions 0.079 (0.013) a   0.095 (0.029) 0.096 (0.031) 

    Mixed 
 Weak First  Weak Last  Weak Shuffled 

 Weak Strong  Weak Strong  Weak Strong 

Experiment 5 

Corrects 0.024 (0.005) 0.211 (0.022)  0.059 (0.010) 0.208 (0.019)  0.040 (0.006) 0.230 (0.021) 

Intrusions 0.073 0.011 a   0.090. 0.024 a   0.089 0.018 a  
aIntrusions in free recall of mixed lists cannot be segregated by study condition 
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Discussion 

   A null list strength effect in cued recall was again observed, consistent with the findings 

of the prior experiments reported here.  Test expectations influencing participants' encoding 

strategy does not seem to drive the positive list strength effect observed in earlier cued recall 

experiments. In the single item recognition and the free recall data, we observed a pattern of data 

consistent, if only anecdotally, with that observed in prior experiments: a null list strength effect 

and a positive list strength effect, respectively (Malmberg & Shiffrin, 2005, Murnane & Shiffrin, 

1991a, 1991b, Ratcliff, McKoon, & Tindall, 1994, RCS(1990), Rose & Sutton, 2006, Sahakyan, 

Abushanab, Smith, & Gray, 2014). 

Experiment 5 

 As a final test for the list strength effect in cued recall, we replicated RCS(1990)e6 as 

closely as possible.  The only notable methodological differences between this experiment and 

that of RCS(1990)e6 are the following, so far as we can tell: a different stimuli set was used, that 

nonetheless matches along the word frequency properties (KF frequency > 50) by RCS(1990); 

the experiment was completed over two sessions separated by 4-10 days, rather than on three 

consecutive days; participants were compensated with class credit rather than financially; and 

lastly, the order of the blocks (after the completion of the three training blocks at the beginning 

of the first session), kept the same for participants tested in the same test group in RCS(1990)e6, 

was completely randomized.  

Methods 

Participants 

105 students from Syracuse University participated in this experiment to obtain class 

credit. 
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Stimuli 

 We expanded our pool of words to 1779 high frequency words (KF frequency > 50, 

logHAL > 9, 4-11 letters long) to accommodate the increased number of stimuli required for this 

design. 

Procedure 

 Across two sessions (4-10 days apart, separated by a weekend), participants received a 

total of 24 study-test blocks, 8 each for cued recall, single item recognition, and free recall.  For 

each of the 8 blocks per test type, 5 of them were arranged as they were in Experiment 3 (pure 

strong, pure weak, weak first (mixed), weak last (mixed), and weak shuffled (mixed).  The 

remaining 3 study-test blocks consisted of a training block, identical in form to the pure weak 

block, a long list of weak pairs (long weak) consisting of 40 word pairs each presented once, and 

a short list of strong pairs (short strong) consisting of 10 word pairs presented four times each, 

with inter-item spacing restricted to between 5 and 15 intervening presentations.  Memory for 

each of these list types was tested with single item recognition, cued recall, and free recall, post-

cued for a total of 24 study-test blocks. 

 During session 1, participants ran though the three training blocks (1 per retrieval task, 

order randomized) followed by 9 other blocks selected at random.  Participants were informed 

after the three training blocks that they would be tested using those three methods throughout the 

remainder of the experiment.  During session 2, participants ran through the remaining 12 

blocks, again in a random order. 
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Results 

90 people completed both sessions of the experiment.  Due to technical problems 

complete data sets exist for only 51 participants and analyses were conducted using only data 

from those participants. 

Cued Recall 

 Cued recall data (Figure 1, Table 1) was analyzed using multiple repeated measures 

ANOVAs.  A 3 (weak first vs weak last vs weak shuffled) x 2 (weak vs strong) repeated 

measures ANOVA revealed no list strength interaction for the three response measures, 

sphericity assumed (correct responses: F(2,100) = 2.93, p = .058, intrusions: F(2,100) = 1.91, p = 

.154; response failures: F(2,100) = 1.02, p = .364, sphericity assumed in each case).  No 

significant main effects of list type were observed, F < 1.  We therefore collapse across the three 

mixed list types and report the calculations from a 2 (mixed vs pure) x 2 (weak vs strong) 

repeated measures ANOVA.   

 In the 2 x 2 repeated measures ANOVA, no significant list strength interaction was 

observed for correct responses, F(1,50) = 2.72, p = .106, intrusions, F(1,50) < 1, or response 

failures F(1,50) = 3.10, p = .085.  The correct response data gives anecdotal evidence for the null 

hypothesis of a null list strength effect, BF01 = 2.50.  Strong pairs elicited more correct responses 

and fewer response failures than weak pairs (corrects: F(1,50) = 66.09, p < .001; response 

failures: F(1,50) = 51.4, p < .001).  No significant main effect of strength on intrusions, F(1,50) 

= 1.91, p = .173, or main effect of list (corrects and response failures: F(1,50) > 1, intrusions: 

F(1,50) = 1.46, p = .233) was observed.4 

4 To ensure that the reduction in sample size did not harm statistical power in a manner that changes the qualitative 
outcome of the cued recall statistics, we reran the 2x2 ANOVA using the entire set of participants who had data for 
all of the five relevant cued recall blocks (pure strong, pure weak, weak first, weak last, weak shuffled).  No 
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Single Item Recognition 

 We collapsed the d’ and hit rate data (Figure 1 for d’, Table 3 for hits and false alarms as 

well) to 2 (mixed vs pure) x 2 (weak vs strong) repeated measures ANOVAs and the false alarm 

rate data to a 1-way (pure weak vs pure strong vs mixed) repeated measures ANOVA, as a 3 

(weak first vs weak last vs weak shuffled) x 2 (weak vs strong) repeated measures ANOVA 

revealed no main effect of mixed list type or list strength interaction for discriminability (main 

effect of list: F(2,100) = 2.13, p = .124, sphericity assumed; main effect of strength: F(1,50) = 

121.87, p < 0.001; interaction: F(2,100) < 1, sphericity assumed).  No significant list strength 

interaction was observed, F(1,50) < 1.  This is substantial evidence for the null hypothesis of a 

null list strength effect, BF01 = 8.09.  Strong words elicited a higher d’ than weak words, F(1,50) 

= 153.7, p < .001.  No main effect of list type was observed, F(1,50) < 1.   

Strong words elicited higher hit rates than weak words, F(1,50) = 131.72, p < .001.  

Words on pure strong lists were more likely to elicit hits than those on pure weak lists, F(1,50) = 

20.42, p = .001.  A significant list strength interaction was observed for hit rates, F(1,50) = 

34.99, p < .001.  List type had a significant effect on false alarm rates, F(2,196) = 40.46, p < 

.001, sphericity assumed, with pure strong lists eliciting the most false alarms and pure weak lists 

eliciting the least. 

Free Recall 

 A 3 (weak first vs weak last vs weak shuffled) x 2 (weak vs strong) repeated measures 

ANOVA revealed no significant main effect of list, F(2,100) < 0, sphericity assumed, or list 

strength interaction, F(1,50) < 0.  Free recall correct response rates (Figure 1, Table 2 for 

intrusions also) were therefore collapsed to a 2 (mixed vs pure) x 2 (weak vs strong) repeated 

significant list strength interaction was found (F(1,80) = 2.395, p = .126).  This is substantial evidence for the null 
hypothesis, BF01 = 3.55.    
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measures ANOVA and intrusions to a 1-way (pure strong vs pure weak vs mixed) repeated 

measures ANOVA.  A significant list effect interaction was observed for the proportion of 

correctly recalled words, F(1,50) = 13.19, p = .001, BF01 = 0.0291, strong evidence against the 

null hypothesis of a null list strength effect.  Strong words were more likely to be recalled than 

weak words, F(1,50) = 106.70, p < .001.  No effect of list type was observed was observed either 

for corrects, F(1,50) < 1, or intrusions, F(2,100) < 1, sphericity assumed. 

Discussion 

 The results of this experiment largely match those observed in the prior four experiments.  

While replicating the positive list strength effect in free recall and the null list strength effect 

observed in single item recognition, we failed to observe a positive list strength effect in cued 

recall. 

 It is perhaps worthy of note that this experiment, the closest replication to that of 

RCS(1990)e6, contains the most evidence favoring a positive list strength effect over a null 

effect and therefore comes closest to replicating the outcome of RCS(1990)e6.  One possible 

explanation for this is that both RCS(1990)e6 and this experiment were conducted across 

multiple days and included a larger number of study-test blocks.  In order to retrieve the items 

studied within a given block, participants must be able to discriminate between those words 

studied on the relevant block from those from prior, irrelevant blocks.  The presence of other 

blocks and their spacing across multiple sessions may make this more difficult, requiring more 

attention paid to that information used to discriminate between lists—context—and therefore 

leading to a more positive list strength effect than otherwise. 

25 



www.manaraa.com

 

Cross-Experiment Analysis 

 Across five experiments, we have thus far failed to find evidence for a positive list 

strength effect when participants are tested for cued recall, and in fact found evidence in favor of 

a null list strength effect beyond anecdotal levels in 4 of the 5 experiments.  We next evaluated 

the magnitude of the list strength effect by a combined analysis of all five experiments.  To that 

effect, we constructed a Bayesian model that is neutral as to the relations between conditions and 

experiments and that accounts for variation by participant (Figure 2).  The model states, simply, 

that each level of strength on 

each list of each experiment is 

its own independent condition 

denoted c in Figure 2.  There are 

28 conditions in total.  

Experiments 1,2, and 4 each 

contribute one mixed strong; 

mixed weak; pure strong; and 

pure weak condition.  Experiments 3, and 5 each contribute three mixed strong and three mixed 

weak conditions, reflecting the three mixed list types on those experiments, and one pure strong 

and pure weak condition each.  As such each participant, denoted by j in Figure 2, completed at 

least 4 of these conditions, corresponding to the list by strength conditions in the participant’s 

experiment.  A participant in Experiment 1, 2, or 4 completed 4 conditions, while a participant in 

Experiment 3 or 5 completed 8 conditions.  Each participant j’s outcome (the total number of 

correct recalls) on each condition c is considered to be binomially-distributed with Nc = number 

of trials on that condition and a underlying recall probability pc,j.  Each pc,j is a logistic function 

 

Figure 2: Graphical model of the Bayesian cross-experiment 
analysis for the 5 experiments. 
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of βc + βj, where βc is the overall performance across participants on condition c and βj is the 

overall performance across conditions of participant j.  To find the list strength effect under this 

model, simply average the βc within each of the mixed weak (MW), mixed strong (MS), pure 

weak (PW), and pure strong (PS) conditions and find the contrast DoD = (MS - MW) - (PS - PW).  

This contrast is presented in Figure 3A, based off of Runjags simulations computed in R with an 

 

Figure 3: Results from the Bayesian statistical model. Solid curve gives density, dashed line 
highlights a contrast of 0. (A) Posterior distribution of the contrast by condition and (B) the 
posterior predictive contrast for correct responses.  Contrasts are computed by first averaging 
the posteriors for all parameters β or predictives p within a given list strength condition then 
finding the difference of differences DoD = (MS - MW) - (PS - PW). 
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effective sample size greater than 1000 per each of the 28 conditions.  The 95% highest density 

interval (HDI) of this contrast excludes zero, suggesting that a positive list strength effect is, in 

fact, occurring in cued recall tasks.    

Additionally, one may transform the parameters βc into probabilities, pc = (1 + exp(βc))-1, 

then average and compute the contrast as done with the underlying parameters.  The outcome of 

this is presented in Figure 3B.  The null effect falls with the 95% HDI.  That the contrast of the 

underlying parameters yields a positive list strength effect, but the contrast of the transformation 

does not, highlights the importance of computing the underlying parameters of the conditions 

rather than simply taking a naïve contrast of the correct response rates.  The list strength effect in 

cued recall is small enough that it appears almost null when observing along the dimension of 

correct response rates or, in this case, its posterior predictive distribution. 

Discussion 

Across five experiments, we observe a null or very small positive list strength effect in 

cued recall.  This is in contrast with both the null-to-negative list strength effect that has been 

previously observed in recognition and the large, positive list strength effect observed in free 

recall. 

The list strength effect, has, historically, been a diagnostic effect for models of memory.  

Two prior experiments have demonstrated a positive list strength effect in cued recall (Ratcliff, 

Clark, & Shiffrin, 1990; Kahana, Rizzuto, & Schneider, 2005), however, our data more clearly 

place the list strength in cued recall as a very small positive effect that is indistinguishable from a 

null effect.  Now that the size and direction of the effect in cued recall has been more firmly 

characterized, we turn towards modeling this effect within REM. 
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The List Strength Effect in Recognition 

The null list strength in recognition, according to REM and similar models (e.g. SLiM) is 

due differentiation during encoding.  Additional information in a trace provides more evidence 

for or against that trace being a representation of some presented stimulus.  If two items are 

distinct, more information in the representation of one provides evidence that it is not a 

representation of the other.  Strongly encoded mismatching traces are therefore less likely to be 

confused as a matching trace than weakly encoded ones.  This is a fundamental property of how 

information is represented and assessed in the model: so long as two stimuli are distinct and 

already represented in memory, learning more about one does not add more noise to decisions 

about the other. 

The List Strength Effect in Recall 

The positive list strength effect in free recall is driven by competition between how well 

memory traces match the reinstated context.  On pure lists, all the context information, being 

encoded with approximately equal strength, competes on an equal footing to be retrieved.  On a 

mixed list with spaced repetitions, repeated items have more strongly encoded contexts than 

weakly encoded pairs.  Strong contexts in this case dominate weak contexts in the competition to 

be retrieved, leading to a greater probability of outputting a strong item and a lesser probability 

of outputting a weak item on a mixed list, in comparison to a pure list. 

One prior implementation of cued recall in REM was outlined by Diller, Nobel and 

Shiffrin (2001), which prioritized accounting for response time and accuracy in cued recall.  The 

key element of our model, in contrast, is accounting for context as a retrieval cue: we do not 

consider response times in this paper.  Details pertaining to response times, superfluous for the 

stated purpose, are therefore omitted from the implementation presented here.   
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Retrieving Effectively Memory 

In Retrieving Effectively from Memory (REM; Shiffrin & Steyvers, 1997) stimuli are 

represented as vectors consisting of w features.  Those features are distributed geometrically, 

such that, if ge is the base rate parameter, the probability of feature v taking value i is

Pr(𝑣𝑣 = 𝑖𝑖) = 𝑔𝑔𝑒𝑒(1 − 𝑔𝑔𝑒𝑒)𝑖𝑖−1 (3)

 Experimental manipulations of word frequency are represented in the model as changes in ge, 

where lower frequency words are distributed using a smaller ge, and higher frequency words are 

distributed using a larger value of ge.  Each item is represented by a randomly generated vector 

of features.  Context information within a study-test block is assumed for the sake of simplicity 

to be the same: a single study-test context represents the context at both study and test.  Deeper 

instantiations of context allow for some degree of contextual mismatch between study and test 

and a drift of context across the course of the experiment (e.g.: Mensink & Raaijmakers, 1989; 

Criss & Shiffrin 2004b; Lehman & Malmberg, 2013).

Exposure to a stimulus prompts storage of features from that stimulus and the encoding 

context in episodic memory, a process that is assumed to be both noisy and incomplete.  For any 

given stimulus presented, the odds of storing any given feature into its representative trace is 

given by u.  If a feature is to be stored, it is directly copied from the stimulus with probability c.  

If it is not copied, then the stored feature takes a value from the geometric distribution with 

parameter gs, where gs is an internal estimate of the shape of the geometric distribution for 

stimuli, based upon a lifetime of experience.  Although it need not be the case, here it is assumed 

for the purposes of simplicity that ge = gs.  In the event that multiple items are presented 

simultaneously, such as in paired associate learning, the episodic association between the items 

is represented as a concatenation of the encoded vectors, although more realistic 
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implementations of the model allow the storage of emergent associative features (e.g., Criss, 

2004; Criss & Shiffrin, 2004a; 2005).  As such, a list of paired associates would be represented 

in memory as a list of traces where each trace is a concatenation of three vectors: the two items 

plus an experimental context. 

If a paired associate is presented multiple times within the same context, additional 

features are added to the traces.  For the purposes of simplicity, we assume that the model always 

updates the correct image (the image that was first encoded from the stimulus) if it has already 

been encoded.  This can produce different results from a study-time manipulation in that 

repetition strengthens contextual information, while increased study time need not (Malmberg & 

Shiffrin, 2005).  An elaborated model of encoding would allow the decision of whether to add a 

new trace or update an existing trace (and, in that case, which trace to update) to depend upon a 

comparison of the currently presented stimuli to the long-term store (Shiffrin and Steyvers 

(1997) and Criss (2006) Criss, Malmberg, & Shiffrin (2010). 

During test, a stimulus upon presentation is compared to traces.  For each trace-stimulus 

comparison, a likelihood ratio λ is computed, denoting the likelihood the trace was encoded from 

the test stimulus versus the likelihood that the trace was encoded from any other stimulus.  For 

some image j being compared to stimulus k, the likelihood ratio λjk for j being a representation of 

k is: 

𝜆𝜆𝑗𝑗𝑗𝑗 =
Pr(Old|Data)

Pr(New|Data)
= (1 − 𝑐𝑐)𝑛𝑛𝑗𝑗𝑗𝑗��

𝑐𝑐 + (1 − 𝑐𝑐)𝑔𝑔𝑠𝑠(1 − 𝑔𝑔𝑠𝑠)𝑖𝑖−1

𝑔𝑔𝑠𝑠(1 − 𝑔𝑔𝑠𝑠)𝑖𝑖−1
�
𝑛𝑛𝑖𝑖𝑗𝑗𝑖𝑖

∀𝑖𝑖

 
(4)

where njq counts the number of encoded features that do not match the stimulus and nijm counts 

the number of features with value v = i that do match the stimulus.  See Shiffrin and Steyvers 

(1997) for a derivation of this equation.  This occurs both for the stimulus presented and the 
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study-test context in which it was presented, yielding λIjk for item information and λCjk for context 

information.  

REM can account for effects from multiple test types by utilizing different retrieval 

strategies to account for task demands.  For single item recognition, these likelihood ratios are 

averaged to give a global familiarity Φ, which is then compared to some criterion ε.  If the global 

familiarity exceeds this criterion, then the model states that the presented stimulus is “old” or has 

been studied in the cued context.  Otherwise it states that the stimulus is unstudied, or “new.”  

The recognition decision can be written as

Response𝑗𝑗 = � ”old”, Φ𝑗𝑗 > ε
”new”, Φ𝑗𝑗 ≤ ε 

(5)

REM completes recall tasks by repeatedly sampling for to-be-recovered information and 

attempting to recover that information (Figure 4).  In brief terms, sampling occurs via the Luce 

choice rule and is a function of the degree of match between the test cue and the traces in 

memory.   Upon sampling of some trace, any sampled item information is compared to a 

threshold ε.  If the item passes this threshold, then the model attempts to output the unsampled 

item information, with the probability of output equal to the proportion of correctly encoded 

traces, raised to the power τ.  The number of times this sample-recovery loop may attempt this 

process is limited by Kmax failures. 

For free recall, we assume for purposes of simplicity that context serves as the sole test 

cue.  As such, the probability of selecting an item j from the long term store is a function of the 

degree of match between that item’s concatenated context information and the test context k: 

Pr(𝑗𝑗|𝑘𝑘) =
𝜆𝜆𝐶𝐶𝑗𝑗𝑗𝑗

𝛾𝛾

∑ 𝜆𝜆𝐶𝐶𝑛𝑛𝑗𝑗
𝛾𝛾𝑁𝑁

𝑛𝑛=1
 

(6)
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where N gives the number of relevant 

items in the long-term store.  The 

“squishing” of λCjk with parameter γ 

is consistent with prior free recall 

instantiations of REM (Malmberg & 

Shiffrin, 2005) and is used to 

attenuate the heavily skewed 

distribution of λ (Shiffirn & Steyvers, 

1998, Diller, Nobel, & Shiffrin, 

2001, Malmberg & Shiffrin, 2005).  

Essentially, the sampling of items 

from memory is demonstrably noisier 

than predicted by an unweighted 

Luce choice of the contexts, as such γ 

accounts for this additional noise.  

Potential sources of this noise 

include, but are by no means limited 

to, item information in the test cue, 

mismatches between the study and test contexts, generally weaker encoding of context 

information relative to item information, and/or limited activation of contextual features from the 

test cue during test, due perhaps to attentional weighting.  This question, although worthy of 

study, is not more deeply considered here.  

 

Figure 4: The sample-recovery process of REM.  The 
model samples for a portion of a trace using some test 
cue, tests the sampled item information against threshold 
ε, then attempts to output the unsampled item features 
from that trace. λ represents the comparison of the test 
cue to the trace, in the case of cued recall λ = λC

γλI.  Other 
parameters and values: k = current attempt; Kmax = 
maximum number of retrieval attempts; njm = number of 
features in the to-be-recovered trace that match the 
lexical-semantic features of the word the features 
represent; w= the length of the vector that contains the 
proposed target, 𝒏𝒏𝒋𝒋𝒋𝒋 𝒘𝒘⁄  gives the proportion of features 
in the proposed target that match the lexical-semantic 
trace it represents; τ = factor weighting probability of 
retrieval. 
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In the case of multiple unsampled items in a trace, as in free recall testing of studied word 

pairs, one item is selected at random for a recovery attempt upon sampling of its context.  An 

elaboration of the model would allow the other member of the pair to then be recovered if the 

first recovery was successful (Lehman & Malmberg, 2013), which would account for a zigzag 

effect (so termed by Davelaar et al. 2006) in the serial position curve during some free recall 

tasks.  This modification would not qualitatively alter the outcome of the list strength effect in 

free recall.  Furthermore, because in cued recall an item and context are used to sample and 

therefore only one unsampled item would exist in the sampled trace, this elaboration would have 

no effect on our instantiation of cued recall. 

During the sampling of cued recall, in contrast to Diller, Nobel, and Shiffrin (2001), both 

item and context information contribute to the sampling probabilities.   Specifically, the 

probability of the selecting item j from a set of N items, given some test cue k, is 

Pr(𝑗𝑗|𝑘𝑘) =
𝜆𝜆𝐶𝐶𝑗𝑗𝑗𝑗

𝛾𝛾𝜆𝜆𝐼𝐼𝑗𝑗𝑗𝑗
∑ 𝜆𝜆𝐶𝐶𝑛𝑛𝑗𝑗

𝛾𝛾𝜆𝜆𝐼𝐼𝑛𝑛𝑗𝑗𝑁𝑁
𝑛𝑛=1

 
(7)

where I denotes the likelihood comparison for the item information, and C denotes that for the 

concatenated context.  Setting γ = 0 sets the model to an items-only version similar to that of 

Diller, Nobel, and Shiffrin (2001). 

The addition of contextual information is critical to allow the cued recall model to predict 

a positive list strength effect.  This is made clear when the Luce choice rule for cued recall is 

algebraically extended thusly: 

Pr(𝑗𝑗|𝑘𝑘) =
𝜆𝜆𝐶𝐶𝑗𝑗𝑗𝑗

𝛾𝛾𝜆𝜆𝐼𝐼𝑗𝑗𝑗𝑗
𝜆𝜆𝐶𝐶𝑗𝑗𝑗𝑗

𝛾𝛾𝜆𝜆𝐼𝐼𝑗𝑗𝑗𝑗 + ∑ 𝜆𝜆𝐶𝐶𝑛𝑛𝑗𝑗
𝛾𝛾𝜆𝜆𝐼𝐼𝑛𝑛𝑗𝑗𝑛𝑛≠𝑗𝑗

 
(8) 

The probability of sampling the correct image is a function of (1) the degree of match for the 

correct trace and (2) the summed degree of match for all the mismatching traces.   The effect of 
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strengthening the correct trace impacts only the term 𝜆𝜆𝐶𝐶𝑗𝑗𝑗𝑗
𝛾𝛾𝜆𝜆𝐼𝐼𝑗𝑗𝑗𝑗.  The effect of strengthening 

other traces impacts only the summand ∑ 𝜆𝜆𝐶𝐶𝑛𝑛𝑗𝑗
𝛾𝛾𝜆𝜆𝐼𝐼𝑛𝑛𝑗𝑗𝑛𝑛≠𝑗𝑗 .  Manipulations of memory strength for 

other items on the study list are felt in the model by altering the distribution of this summand.  

Consider the items-only case where γ = 0.  By property of differentiation, strengthening other 

items on the list will tend to shift the distribution of 𝜆𝜆𝐼𝐼𝑛𝑛𝑗𝑗 and therefore the distribution of 

∑ 𝜆𝜆𝐼𝐼𝑛𝑛𝑗𝑗𝑛𝑛≠𝑗𝑗  towards smaller values, and therefore increase the probability of sampling the correct 

trace.  This leads, then, to a negative list strength effect: strong items on a pure strong list are 

more likely to be correctly sampled (and therefore recalled) than those a mixed list, and weak 

items on a pure weak list are less likely to be correctly sampled (and therefore recalled) than 

those on a mixed list.  Weighting item information, as per Diller, Nobel, and Shiffrin (2001), 

would reduce the size of this effect, but cannot reverse the pattern.  

Figure 5: Distribution of mismatching lambdas, computed using just items or with items plus 
contexts.  Parameters: ustrong = 0.30, uweak = 0.15, number of mismatching items = 31, γ = 0.2. 
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Context, on the other hand, can reverse the effect from negative to positive (Figure 5).  

Because context information is largely the same within a study-test block (in other words, all 

study contexts are similar to each other), this happens in the same way that similarity between 

items can reverse the effect of differentiation (Criss, 2006).  All items encoded within a study-

test block have matching contexts, thus strongly encoded mismatching items also have strongly 

encoded matching contexts.  The increase in familiarity from more strongly encoded contexts 

outweighs the decrease in familiarity for more strongly encoded items, such that strongly 

encoded mismatches become more familiar than weakly encoded ones.  This reverses the 

direction of the list strength effect.  Figure 6 is demonstrative of the impact of context on cued 

A. 
Items Only, γ = 0 

B. 
Items + Contexts, γ = 0.2 

C. 
Items + Contexts, γ = 1.0 

 

Figure 6: Cued recall predictions for the (A) items only model, γ = 0, (B) the items-plus-
contexts model with context weighted to γ = 0.2, and (C) the items-plus-contexts model with 
context weighted to γ = 1.0.  Parameters ustrong = 0.30 and uweak = 0.15 approximate levels of 
performance for item recognition on Experiment 5.  Parameters τ = 0.5, ε = 1.0 are standard 
(Diller, Nobel, & Shiffrin, 2001; Malmberg & Shiffrin, 2005).  Kmax = 1 approximates overall 
levels of cued recall performance on Experiment 5 and does not alter the direction of the list 
strength effect. 
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recall in this regard: increasing the contribution of context to sampling in cued recall increases 

the list strength effect.  

  Figure 7 provides qualitative predictions for the simple and constrained implementations 

of free recall, cued recall, and single item recognition described above.  These constrained 

parameters also provide decent quantitative fits to the actual data from Experiment 5.  After 

adjusting u to approximate item recognition performance on Experiment 5, the only “free” 

parameters were Kmax for cued and free recall.  The simple inclusion of context information, 

weighted to the same degree as in free recall, accounts for list strength patterns observed in the 

data: the list strength effect in cued recall falls about halfway between single item recognition 

and free recall.  

A. 
Item Recognition 

B. 
Cued Recall 

C. 
Free Recall 

 

Figure 7: Data (triangles and dotted lines) from and model predictions (circles and solid 
lines) to Experiement 5 for (A) single item recognition, (B) cued recall (C) free recall.  
Parameters: ustrong = 0.30 and uweak = 0.15 are set to the levels of performance for item 
recognition.  Paremeters γ = 0.2, τ = 0.5, ε = 1.0 are standard (Diller, Nobel, & Shiffrin, 2001; 
Malmberg & Shiffrin, 2005) and fixed a priori for demonstrative purposes.  The only free 
parameters are Kmax = 1 for cued recall and Kmax = 8 for free recall. Kmax does not alter the 
direction of the list strength effect. 

0

2

Weak Strong

d'

Pair Strength 

Mixed E5
Pure E5
Mixed Pred.
Pure Pred. 0

0.5

Weak Strong

Pr
(C

or
re

ct
)

Pair Strength 

0

0.5

Weak Strong

Pr
(C

or
re

ct
)

Pair Strength 

37 



www.manaraa.com

 

As such, cued recall may be thought of as a middle ground between recognition and 

recall tasks.  Its position as a middle ground is important: it means that cued recall can serve as a 

point of contact between effects and theories more closely associated with recall, and those more 

closely associated with recognition.  One limitation to the separation of memory models into free 

recall and recognition is that findings from one sub-discipline can have limited impact on the 

theories in the other. However, both item and context information are critical in cued recall in the 

REM model.  

Other Models of Episodic Memory 

TODAM (Murdock, 1982) is an interesting comparison to REM in this instance for two 

reasons.  First, the pattern of the list strength effect in TODAM is driven by memory for items 

prior to the studied list and interference from recalled items in unstructured retrieval tasks 

(Murdock & Kahana, 1993), rather than utilization of context.  Second, it utilizes associative 

information in a unique fashion that is not fully accounted for in the REM model, yet might 

explain some observed dissociations between item recognition and cued recall tasks (e.g. Aue, 

Criss, & Fischetti, 2012) and item and associative recognition tasks (e.g. Hockley & Cristi, 1996, 

Criss, 2004).  The focus of this review of TODAM is the first point.  The second, and beyond 

that whether and to what degree explicit associative features are necessary within the REM 

model, is a topic of future study.  

TODAM is a single-store model where information is added to and slowly decays from 

memory.  In TODAM2 (Murdock, 1993, Murdock, 1997), stimuli are represented by vectors of 

normally-distributed feature values, and the association between two stimuli is represented by 

their sum5.  Each item is additionally flanked by information pertaining to context, which allows 

5 In prior versions of TODAM and (Murdock, 1982), the association between two items was represented a 
convolution of their vectors. 
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for a more rapid forgetting of item information than associative information (Murdock, 1997).  

Items and associations are encoded by auto-convolving the vectors and adding them directly to 

memory.  This encoding is probabilistic: a limited set of features are activated before 

autoconvolution.  Additionally, the model subscribes to a limited attention hypothesis, wherein 

the contributions of individual items and their association are weighted.  Because item 

information is present in the association, attending to associative information does not seriously 

harm item recognition performance, but failing to attend to associative information will harm 

associative recognition performance.  This is the half-seesaw effect observed by Hockley & 

Cristi (1996).  Furthermore, upon each encoding event, memory decays along with the 

information contained within.  Retrieval tasks begin by computing the cross-correlation between 

the test cue and memory.  The resulting output is an approximation of the item studied alongside 

the test cue, or if unassociated an approximation of the test cue itself. 

How this approximation is used during retrieval is task-dependent.  In recognition, the 

dot product of the output and the test cue is compared to some criterion, with values above the 

criterion being called “old” and sub-criterion values being called “new.”  Recall can be modeled 

by feeding the output into a Brain-State-in-a-Box deblurring algorithm as per Lewandowsky 

(1994).  The deblurred image is then compared to the possible output options via dot-product.  

The best match is outputted if that dot-product is greater than some output criterion.  In either 

task, the output is fed back into the model which can interfere with future retrievals 

(Lewandowsky & Murdock, 1989). 

TODAM is able to predict a null list strength effect in recognition and cued recall and a 

positive list strength effect in free recall, then, because the memory system contains information 

leading into a study phase and continues to learn during test.  The information that was already 
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within memory before the study phase buffers the memory system against the additional variance 

incurred by strengthening items.  This prevents the positive list strength effect that might 

otherwise occur if no prior memories existed (Murdock & Kahana, 1993).  In free recall, a 

positive list strength effect is driven by re-encoding of recalled items and the order in which 

these items tend to be retrieved, namely that strong items tend to be retrieved and be re-encoded 

first.  On a mixed list, this means that strong items are more likely to be retrieved than weak 

items in free recall simply because they are less likely to have been interfered with by prior 

recalls.  In cued recall and recognition, because the order of testing is fixed, re-encoding the 

retrieved items cannot drive a positive list strength effect (unless of course the experimenter tests 

strong items before weak items), therefore a null list strength effect occurs. 

The experimental results of this paper are something of a mixed bag for TODAM when it 

comes to its account of list strength.  On the one hand, that our estimate the list strength effect in 

cued recall is smaller than previously thought (modal DoD from the posterior predictive 

distribution of the cross-experiment analysis = 0.015 (Figure 3), DoD from summary means of 

RCS(1990)e6 = 0.058) is a good thing for the model: TODAM predicts a null list strength effect 

for cued recall tasks, and the effect now appears be closer to null than before.  However, 

TODAM also predicts no clear dissociation between item recognition and cued recall when it 

comes to the list strength effect.  This is in conflict of our finding of a small but positive effect 

for cued recall that contrasts with the null-to-negative effect in item recognition.  An accounting 

of this contrast in TODAM will likely require an adjustment to the item recognition process such 

that strengthening memory removes noise from the decision. 
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Summary 

Across five experiments, a very small positive list strength effect was found, in contrast 

to the canonical null-to-negative list strength effect in recognition and large, positive list strength 

effect in free recall.  This finding can be accounted for in the REM model if context information 

is used alongside items as part of the test cue during the memory search.  This establishes cued 

recall as a middle ground between free recall, where the effects of context dominate, and 

recognition, where the effects of items dominate, because both of these components are critical 

in accounting for the cued recall data presented here.  If, as memory researchers, we endeavor to 

understand the basic processes of memory, this means developing models that encompass a wide 

variety of retrieval tasks.  Cued recall may, in this regard, be an important link in that endeavor.  
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